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The two-dimensional Orr-Sommerfeld equation in a domain of infinite cross-stream extent 
is commonly solved by joining a numerical computation at some finite distance from the shear 
layer to the “free-stream” normal mode solutions for the mean velocity lJ = const. In this 
paper these solutions are improved by introducing the asymptotic expansions for U and CJ),, 
into the O-S equation. The resulting inhomogeneous “free-stream” O-S equation yields the 
asymptotic corrections to the U = const solutions analytically. The Blasius boundary layer, 
the Blasius mixing layer and also the tanh (y)-profile are considered as mean velocity profiles. 
The results are exploited to correct the starting data of numerical computations for the finite 
computational domain which caused problems in previous studies aimed at the calculation of 
higher modes. It is shown that, if the starting data are given by an N-term asymptotic 
expansion (usually two terms in this paper as opposed to the commonly used leading term 
only), an eigenvalue approaches its asymptotic value at the same rate as the mean velocity 
approaches its N-term asymptotic expansion when the computational domain is extended 
further and further away from the shear layer. With the considered mean velocity profiles 
which have asymptotic expansions in t$rms of powers of exponentials, this leads to a drastic 
increase in significant figures of an eigenvalue for a given domain. 

1. INTR~DUC~ON 

In recent work aimed at the clarification of the full spectrum of the O-S equation 
in an infinite domain, difliculties have been reported which were traced back to the 
necessarily finite computational domain. Mack [5], in his numerical study of the 
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temporal eigenvalue spectrum of the Blasius boundary layer, reports that he has to 
start the numerical integration for the higher modes very far from the wall. For 
instance, at a Reynolds-number of 1000 he has to start as y, = 14 to obtain the 
highest discrete mode 10. This implies a very refined computation technique as the 
deviation of the mean velocity from its asymptotic value 1 is important all the way 
out to y, = 14, where its value is of the order of lo-“. Also Antar and Benek [ 1 ] 
show some results where higher mode eigenvalues depend strongly on the starting 
point y, of their numerical integration. 

In this paper a method is divised to improve this situation by correcting the usual 
“free-stream” starting data (obtained for constant mean velocity) for the finite 
computational domain. This is achieved by using the asymptotic expansion of the 
mean velocity profile and constructing the corresponding asymptotic expansion of the 
solution of the O-S equation. Equivalently this amounts to an approximate analytic 
integration from infinity to the starting point y, of the numerical calculation. 
Independently a similar approach has been adopted by Ng and Reid [8] in the 
limiting case of large Reynolds number. In the following the asymptotic behaviour of 
different Blasius layers (boundary layer, free shear layer) is reviewed in Section 2 and 
used in Section 3 to develop the asymptotic behaviour of the solutions of the O-S 
equation. 

2. THE ASYMPTOTICS OF THE BLASIUS EQUATION 

We consider two cases of two-dimensional shear layers sketched in Fig. 1: the 
laminar boundary layer over a flat plate, denoted subsequently by (BL), and the 
laminar mixing layer, denoted by (ML). The governing boundary-layer equations 
(see, e.g., Schlichting, [9]) accept a similarity solution which was first obtained by 
Blasius [2]. With asterisks denoting dimensional quantities throughout the paper, the 
similarity variable 

112 
y=Ti y* 

i i v*x* 

IBL) 
‘y’, urn* I- 

’ 

Ls! 

, u*(Y) 

IML 1 

(1) 

FIG. 1. The shear layers under consideration. 
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is introduced, where the reference velocity Uz is taken as the constant free-stream 
velocity at large positive y* and where v * denotes the kinematic viscosity. With this 
similarity variable the boundary-layer equations reduce to the well-known Blasius 
equation 

2D3F(y)+F(y)DZP(y)=0 with D” = dm/dyn’. (2) 

The nondimensional velocity components U and V in the x* and y* direction are 
obtained through 

U= t?/Uz = DF(y), 

V = P=+/U$ = ; R, “2 [ yDF( y) - F(y) ] with R, = Uz x*/v*. 
(3) 

The boundary conditions for F in the two cases (BL) and (ML) are given by 

(BL) : (ML) : 
DF(+co) = 1, DF(+co) = 1, 

F(0) = 0, F(0) = 0, (4) 
DF(0) = 0, DF(-m) = A. 

It has to be noted that in the case (ML) the condition F(0) = 0, which fixes V = 0 at 
the location y = 0, is arbitrary. But as Lock [4] and others have pointed out this 
arbitrariness amounts only to a shift of the velocity profile along the y-axis or 
equivalently to the free choice of V at y = + co. 

In the remainder of this section the asymptotic behaviour of F(y) for large ( y ] is 
discussed. The presented material is mostly a review of the work by Blasius (21 and 
Lock [4] with some extensions and generalizations. To cover both cases (BL) and 
(ML) the following general condition for F(y) at infinity is considered: 

DF(m) = A with s=&l. (5) 

First, we consider 1 > 0. In this case the leading asymptotic term of F has to be a 
linear function f, of y. If we insert the formal expansion 

into the Blasius equation (2) and order the terms we obtain the set of equations 

2D3f, + foD2f, = 0, Pa) 
n-1 

2D’f, + foD2fn = - ” D’fkfn-k 
k=l 

(n> 1) U’b) 

with f, = 2 fiz, z E fl (y - Q/2, and boundary conditions f,, (SW) = 0 (n > I). 

5R1’41 ‘2 2 
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In this formulation all integration constants arising from the integration of the Of,,, 
have been gathered into 6 so that, considering Df, = A, the boundary condition (5) 
translates into the above condition for the f,. The solution of the first equation (7a) 
is readily obtained as D’f, = y exp(-z’) with a second free constant y. The particular 
solutions of the second order equation have been given in integral form by Blasius 
[2]. In the following, the results for Df, are presented up to n = 3, which is the 
highest n accessible to closed form integration. 

with 

Df, = - y~-“2rc”2~erfc(sz), 

Df, = $A-* i--(7(/2) erfc*(sz) - rc”*zse-‘* erfc (sz) + eP2”}, 

Df, = y3C7’* {-i 7c3’*s erfc3 (sz) - (n/4) z(2z2 + 7) e-” erfc*(sz) 
+ 7+‘* (2’ + 3) se-*” erfc (sz) - 23’2 7r”2se-Z* erfc (2”*sz) 
++3”*n”*s erfc(31’2s~) - ~zeC3’*}, 

with the definition 

erfc (z) = 2n- I’* 
.m 

Jz 
e-“dt; f erfc (z) = - Zn-“* ePZ’. 

The leading asymptotic term of all the expressions, D”f,, which is useful for quick 
evaluations, is obtained directly from the system of equations (7) as 

n a, (4” nz)m 
n2z3n-1 eCnz2{ 1 + O(z-*)}, n > 1; m = 0, l,..., (9a) 

with the recurrence relation for the a, 

a, = 1, 

a 
(9b) 

These approximations are also readily verified by replacing the function erfc(z) in 
expressions (8) by its asymptotic expansion. 

The two free constants y, in (8), and 6, which appears in the definition of the 
variable z, remain to be determined from a comparison with a numerical calculation 
F ““,.,,. 6 is obtained as 6 = limy+sm (y - A- ‘F,,,) and y is determined by matching, 
say, U,, given by (8) to DF,,, at a suitable y. 
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b) 

FIG 2. (a) Relative error of the asymptotic expansion (1 - U,,) with asymptotic leading terms: 
- -3 7(1/4z') exp(-z*); - . . -, y2(5/96z6)exp(-2z2); - ... -, y’(17/1728z9)exp(-3z2). (b) 
Corresponding relative error of D*U,, with asymptotic leading terms: - . -, y(l/z’) exp(-z2); - -. 
y'( 15/32z") exp(-2z’); - ... -, yz(17/108zy) exp(-3z’). 

For the boundary layer with A = 1 and s = + 1 this comparison has been made 
with a calculation to 14 significant digits by M. Monkewitz yielding 
6= 1.7207876575207. y was then obtained by matching ~~=0 Df, given by (8) to 

DF”“lll at y= 5.65 yielding the value y= 0.233727621285 (cf. also Mack [S], who 
used only one term to determine 7). For subsequent reference, the relative errors of 
U,, and Dz U,, are plotted in Fig. 2. The asymptotic leading terms for these errors 
which are also plotted, are taken from (9). 

For the mixing layer, y and 6 have been determined in two cases by comparison to 
calculations of Lock [4] and are listed in Table I. 

To conclude this section, we also review the special case of the mixing layer with 
,4 = 0 although the results are questionable because the boundary-layer assumption 
V@ U is clearly violated on the zero U-velocity side. Considering the boundary 
conditions (4) with DF(-w) = 0, F(-GO) has to be a negative constant u. So the 
following asymptotic expansion for F has been given by Lock [4] : 

F,,=o 1 + \“- b 
i 

,~, 
(loa) 

y-t-w; u < 0. 

Inserting this expansion into the Blasius equation (2) yields a recurrence relation for 
the coefficients b,, 

6, = 1. 

b 
1 

n+, = ;’ k2bkbnt,mk. 
n(n + I)’ g, 

(lob) 
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TABLE I 

Asymptotic Expansions for a Blasius Mixing Layer Profile with Boundary Conditions (4) 

As. expansion 
for JI+ +co 

s=+l 

As. expansion 
for v--co 

s=-1 

Source of 
numerical 
calculation 

A=0 (8) with 
a=1 
6 = 0.529 
y=O.165 

(10) with 
a = - 1.239 
r = 1.63 

Lock 14, 
Table VI 1 

A = 0.501 (8) with (8) with 
i=l 2. = 0.501 
6 = 0.283 6 = 0.749 
y=o.109 y=O.l62 

Lock 14, 
,Table VII ] 

Again, the two free constants u and r are obtained from a comparison with a 
numerical calculation by Lock [4]; they are also listed in Table I. 

3. THE ASYMPTOTICS OF THE ORR-SOMMERFELD EQUATION FOR LARGE ly( 

For the parallel stability analysis of a Blasius layer at a fixed downstream location 
x0*, we chose the length scale L* = (v*x$/Uz)i’* and the velocity scale U*, for 
nondimensionalisation. Seeking normal mode solutions, we write, for the stream- 
function @(x, y, t), 

qx, y, t) = fq y) eia(x-c’). 

With this we obtain the O-S equation for $(y) in the usual way: 

(11) 

{(D* -a’)* - iaR [(U(y) - c)(D* -a’) - D’U(y)]} 4 = 0 (12) 

with R = L*U*,/v* and 4 = DQ = 0 at the boundaries of the domain. 
To investigate the behaviour of 4(y) at large / y 1, we introduce the appropriate 

asymptotic expansion for U(y) and D* U(y) into (12) and at the same time substitute 
the formal expansion C,“=O (4, for 4. With the boundary condition (5) for U, we 
obtain the following equations by collecting terms of equal order : 

with 
p*=a’+iaR(jl--cc), 

(D4 - (a’ + B*) D* + a’j3” } ql 

= iaR {U, (D* - a’) - D* U, ) (p,, 
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with 

The first equation (13a) has the well-known “free-stream” solutions 

(*a) _ 
PO - 

c(ia)e*a.v 
2 

VlO 
(*5) = c’*4’e*“’ (14) 

In the following, we restrict ourselves to the discussion of the first order equation 
(13b) for the correction to these “free-stream” solutions. For the largest part of this 
section we will also specify U, and D2 U, as being given by (8), i.e., by Df, and D”f,. 
Thus, the right-hand side of (13b) reads as 

/I'-a' 
-y z (7r”2r “*s erfc (sz)(D’ - a”) - ,ll’*zeCL’} q. 

for y-+sco(s=f l);L>O. (15) 

The asymptotic behaviour of this expression is given by an algebraic function times 
q. exp(-z’), which suggests the following trial solution for q, : 

(ol = (4, 
1 
Ae-” + d?(z) erfc(sz) 

+ ~::sC,exp(2c,z+c~)erfc[s(ztc,)] . 
n 1 

Insertion of this trial solution into Eq. (13b) yields a cubic equation for c, and, after 
a lengthy calculation, the coefficients A, B(z) and the three C,. The solution is 
conveniently given separately for the pressure- and vorticity-mode correction : 

1/2 (*a) _ (*Ia) yn 91 - PO 1”2 (A - c) 
X 

1 
-exp [f4aA-“‘z t 4a*L-‘1 s erfc (s(z F 2af”*)] 

+ Pa +P> 
2P 

exp[2L-“*(?a t&z +A-'(T-a +/?)“I 

xserfc[s(z tApv2(fa+/3))] 

_ Pa-P> 
w 

exp[2A-“*(fa-/3)z -tL-'(Fa-/I>*] 

Xserfc[s(z tAe"'(Fa-/?))]/, (17a) 
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(f4) _ (*4) 
VP1 --PO 

v l/2 
Al/2 (2 _ c) I 

/3’-a’ 
l /3(An)‘12 exp b’ 1 

+ 2;; 
[ 

2 

-+z+ 
S/?’ - a2 

4b2 1 s erfc [ST] 

+ 3B2 + a2 

4P2 
exp [T4@-“2z + 4P2L-‘] 

X s erfc [s(z f 2&-“2)] 

-exp[21-V2(Tj3+a)z+3,-‘(fj3+a)2] 

x s erfc [s(z + L-“‘(@ + a))] 

-exp[21E-“2(@-a)z+L-L(~P-a)2] 

X s erfc [s(z t K1’*(,/? - a))] 
I 

. (17b) 

If the asymptotic expansions for the error functions is introduced into expressions 
(17) we find that the derivatives of q, show the following behaviour : 

(18) 

This means that the corrections D”rpi*@’ to the higher derivatives D”ob*“’ of the 
pressure mode are the most critical. 

The results (17) are now easily exploited to improve a numerical calculation: At 
each cycle of the eigenvalue shooting algorithm the integration is started at some 
finite y, with the improved starting data D”’ [ok-*’ t &a’](y = y,) and 
D” [I&-~’ t (~‘l-~‘](y = y,) (m = O,..., 3), Th ere b y, expressions (17) for v), have to be 
evaluated with the approximate eigenvalue of the actual iteration cycle. The 
improvement by this procedure is illustrated with a temporal boundary-layer 
calculation using a program of M. Monkewitz [7] to obtain the dependence of the 
eigenvalue c on the starting location z, = (y, - 6)/2 of the numerical intergration 
for the modes 1 (Tollmien-Schlichting mode), 5 and 9 at a Reynolds number 
R = lo4 and a = 0.179 (cf. Mack [5]). The results are presented in Fig. 3, where 
the relative errors of c(z,) obtained with the conventional and with the corrected 
starting data are compared. The reference eigenvalues c, were taken as 
c(y, = 14): ~2) = 0.32500688 - i 0.03246144, ~2’ = 0.26864673 - i 0.09745747, 
c$ = 0.41657957 - i 0.19608952, which differ slightly from Mack’s values possibly 
because of a different interpolation scheme for the velocity profile. To give an idea of 
the magnitude of the corrections (o, , the quantities A: = 1 D”rpi-“‘/D”&“’ 1 (y = p,) 
and LIP = ] ~&~‘/rpb-~’ I( y = y,) arising in the calculation of Fig. 3 are plotted in 
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Fig. 4 as a function of 2,’ for mode 1; neither the corrections for the higher derivatives 
A; nor the corrections for the higher modes 5 and 9 are presented as they follow 
closely Ai (confirming estimate (18)) and the corresponding corrections for mode 1, 
respectively. 

From Fig. 3 it is concluded that the error incurred with the conventional starting 
data depends analytically on z, and behaves essentially like exp( -z,‘) whereas the 
improved starting data yield a reduction of the error by another factor exp(-zf). The 
calculations for the higher modes show the same behaviour. As long as an 
orthogonalization scheme [7] is used which preserves the analytic dependence of the 
iteration function 4(O) on c, no basic difficulty is encountered at smaller z,. In the 
neighborhood of eigenvalues c(z,), 4(O) is approximately given by the first term of its 
Taylor expansion proportional to c - c(z,) with the proportionality constant 
increasing drastically with the mode number. Thus the calculation of higher eigen- 
values is not a problem of the iteration scheme-even the simplest Newton procedure 
will yield a rapid convergence-but a problem of resolution. This is where the 

FIG. 3. Relative error of the eigenvalue c versus zS with starting data D”‘cp, (open symbols) and with 
corrected starting data Dm@, t qj) (solid symbols). Temporal calculation with R = 10’ and o = 0.179 
for mode I (0). mode 5 (Cl) and mode 9 (A). -. -. - . -: slopes of exp(-zi) and exp(-2z:), respec- 
tively. 

FIG. 4. Relative magnitudes A,” = 1 Dmq$“‘/Dm&“‘j (-) and Ai = l&“‘/obmD’l (---) of the 
corrections to the “free-stream” solutions versus z, for the mode 1 calculation of Fig. 3. 
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corrected starting data provide the possibility of reducing the number of integration 
steps and/or the step size to increase the number of significant digits of g(O). If on 
the other hand a nonanalytic orthogonalization scheme is used as, for instance, the 
Gram-Schmidt procedure in [5], it appears that the surface 4(O) becomes more and 
more distorted for smaller starting locations z, to a point where an automatic 
iteration scheme no longer converges. 

To conclude this section, we discuss also the case where U is given asymptotically 
by a series of the type 

U,, = A + T u, exp (n@). 
n=1 

This situation occurs on the zero-velocity side of a Blasius mixing layer with A = 0 
(cf. expression (10) for F,,) or if, for instance, a tanh(y) profile for U is assumed. In 
this case the correction of the “free-stream” starting data is even more important, as 
an eigenvalue from a numerical calculation starting at y, will approach its exact 
value only like exp (6y,). If (19) is inserted into the O-S equation (12) the 
asymptotic expansion for the solution Q is easily obtained as 

4 K f?o 
1 

c d, exp (n6y) 
n=O I 

(20) 

with p. given by (13a), (14) and 

do= 1, 

d, = z 
I 

i ukdnek [D*rp, + 26(n - k) Dq, 
k=l 

+ (n*6* - 2nk6* - a’) cpo] 4D3(po + 6n8D2 ‘p. 

+ [4n26* - 2(a* +/3’)] Dq, + n6[n26* - (a* +fi’)] po/ -‘. 

This last recurrence relation for the coefficients d,, in which p. cancels out, is easily 
programmed on a computer. Thus, the starting data at any ] y,] > 0 can be improved 
in this case to any desired accuracy with no significant increase in computing time. 

4. CONCLUSIONS 

It has been shown that in the case of an infinite domain the accuracy of the results 
obtained from a numerical integration of the O-S equation can be greatly improved 
by correcting the starting data for the finite computational domain using the 
asymptotic corrections of the “free-stream” solutions. The success of incorporating 
these corrections into a shooting algorithm for the eigenvalue is exemplified by three 
Blasius boundary-layer calculations. 
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Practically, the results can be exploited in two different ways: to improve the eigen- 
value with a given starting point y, or to reduce the computation by starting the 
numerical calculation closer to the shear layer. 

From the theoretical standpoint another view of the results is also useful: let us 
consider the boundary-value problem in the finite computational domain and require, 
as a boundary condition at y,, that the solution be a linear combination of the two 
asymptotically damped “free-stream” solutions only, which has been the usual 
approach so far. Now we may ask which combination of solutions has to be taken in 
an exact integration starting at infinity to yield the above boundary condition at y,. 
Using results (17) or (20) it is easy to show that this exact combination has to 
contain also the two asymptotically growing solutions with amplitudes which are of 
the order of the correction to the asymptotically constant mean velocity evaluated at 
ys. In the Blasius case with 1 > 0 they are therefore O(exp(-rz)), and in the case of 
the profile (19), O(exp(#y,)). 

Another point of interest is the factor (A - c)-’ in correction (17) which can 
become large close to the continuous spectrum (cf. Grosch and Salwen, [3]). If 
computations are undertaken in the vicinity of the endpoint of the continuous 
spectrum c = A- k/R, as was done by Antar and Benek [I], then (A - c)-’ yields a 
factor which in the worst case is large of the order O(R). This is not surprising, as in 
the vicinity of the continuous spectrum the asymptotic behaviour is only slowly 
approached by the eigenfunctions. 
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